
An Introduction to Oracle Solaris 11
Author: Pavel Anni, Oracle

pavel.anni@oracle.com

July 2012

Lab Introduction
In this lab we introduce the most interesting features of Solaris 11, based on real life use cases. We will:

create a pool and a file system with ZFS; expand it; snapshot and clone it; use ZFS compression and deduplication;
create a new boot environment as a backup, make our current system unbootable because of some fatal mistakes, reboot the
system using backup BE;
create a couple of zones; install some applications into them; clone a zone; use Resource Management with the zones;
learn some Solaris security features which help to protect your systems and applications;
use DTrace to find bottlenecks in the system

Prerequisites
This lab requires access to Solaris 11 system either in VirtualBox virtual machine or in Oracle Solution Center cloud.

Using the Oracle Solution Center cloud installation

Use your OSC instructions. You will be provided with IP addresses, access instructions and login credentials by your OSC instructor.

Using Your Machine

If you're performing this lab on your own machine, we've provided a VirtualBox appliance that contains all the software and
configuration necessary to complete this lab. All you need is VirtualBox software and a modern (with a CPU supporting virtualization
turned on, AMD-V or VT-x) laptop/desktop with at least 3 GB of RAM and 10GB of free disk space.

Download and install the latest version of VirtualBox for your platform (http://www.virtualbox.org/wiki/Downloads).
Download and install the latest version of VirtualBox Extensions Pack (http://www.virtualbox.org/wiki/Downloads).
Download or find on the provided DVD and import the Hands On Lab machine into VirtualBox (File > Import Appliance). You
will have to accept the OTN Oracle Solaris license to use the appliance.

The Environment
In this lab we are going to use Oracle Solaris 11 virtual appliance in Oracle VirtualBox environment. If you are using lab machines, the
appliance is already installed. You can also download the appliance from Oracle Technology Network.

The Hands On Lab virtual appliance contains the following:

Solaris 11 installation configured for this lab
This lab document

By default, VirtualBox assigns the IP address 10.0.2.15 to the Solaris global zone. We will be using also IP addresses 10.0.2.16 and
10.0.2.17 for local zones. As we are using VirtualBox in NAT (network address translation) mode, this shouldn't interfere with your
outside network environment.

If you are using OSC virtual machines, you will be provided with IP addresses to use in this lab.

You should login into Solaris desktop with the following credentials:

Username: lab Password: oracle1

Introduction to Oracle Solaris 11 Hands-on Lab

1 of 3

After logging in, open a terminal window and assume the root role:

lab@solaris:~$ su root

Password for root is: oracle2011. Don't use the dash "-" in this command: we are going to keep the user lab's environment settings

Note: we don't recommend to log in as root. In Solaris 11 it is prohibited by default; root is only a role, not a login name.

Lab Outline
The labs are independent from each other, you can take them in any order. We just recommend doing all exercises in each lab in
order.

Topic (Use Case) Exercise

ZFS Lab

Z.1 You have some disks to use for your new file system. Create a new disk
pool and a file system on top of it. ZFS Pools

Z.2 You have to create home directories for your users; use file system quota
to limit their space. ZFS File systems

Z.3
You are becoming low on your disk space. Add a couple more disks to
your pool and expand your file system. What other ZFS features can help
you to save space in the future?

ZFS Compression

Z.4 Users tend to keep a lot of similar files in their archives. Is it possible to
save space by using deduplication? ZFS Deduplication

Z.5 A user has accidentally deleted her file. How to restore it without getting
to the backup? ZFS Snapshots

Boot Environments Lab

B.1 You want to make updates to the system, but you want to be able to
return back to the previous state. Boot Environments

IPS Lab

P.1 Solaris 11 has a new packaging system. How to use it? IPS Basics

P.2 How can the new packaging system be used to minimize downtime when
updating your Solaris installation?

IPS and Boot
Environments

Networking Lab

N.1 Solaris 11 introduces new networking commands. What's new and what's
the difference? Networking Basics

N.2 You want to create several virtual network interfaces to use with your
zones. Network Virtualization

Virtualization Lab

V.1 Your development team wants a separate environment to develop their
application. Zones

V.2 You have to install some application packages in the zone and create
users. Inside a Zone

V.3 Your development team wants a copy of this environment. Zone Cloning

V.4 Your departments want to know how much resources do they use to pay
their fair share for the datacenter infrastructure. Zone Monitoring

V.5 You want to control the zones' resource usage. You want to assign certain
amount of processing power to each zone. Resource Management

Security Lab

S.1
User root is anonymous and too powerful. You want to track who
performs superuser actions in your system

Solaris RBAC and
Privileges

Introduction to Oracle Solaris 11 Hands-on Lab

2 of 3

S.2 You want to give your developers the right to run DTrace, but not other
superuser rights.

A Closer Look at Solaris
Privileges

S.3 You want to limit rights for some processes to only very basic rights. Process Privileges and
Rights

S.4
You want to eliminate the need to run certain daemons with root
privileges. Also you want to give the right to start some daemons to
non-root users.

SMF, Process Privileges
and Authorizations

DTrace Lab

D.1 You have noticed that system utilization is very high. How to find the
process which consumes most of the resources? DTrace CPU

D.2 You have noticed that free storage space has decreased dramatically and
keeps decreasing very fast. Who is "eating" our disk space? DTrace Disk

Putting It All Together
The whole idea of this lab is to show you some Solaris 11 features that can be used to create a cloud infrastructure based on Solaris.
You have just created storage pools and filesystems -- think cloud storage. It was fast, it was simple, it was flexible. You have created
and cloned Solaris zones with applications within them -- think cloud machine instances. You have monitored and managed zones
resources -- think cloud elasticity, metering and chargeback. We didn't discuss in this lab Solaris network virtualization, Solaris security,
Solaris package management and many other features which make Solaris 11 truly cloud-oriented operating system. Try and learn
more about Solaris 11 features!

Final Notes
The virtual appliance we used in this lab is configured to be able to perform zone installation without network access. Namely, we've
configured an internal repository with just a small subset of packages necessary for zone installations. If you are going to continue
using this appliance with open network access, you will need to change the repository address to Oracle's standard Solaris repository.

root@solaris:~# pkg set-publisher -G '*' -M '*' -g http://pkg.oracle.com/solaris/release -P solaris

Further Oracle Solaris Education
This Hands-on Lab is just and introduction in Oracle Solaris 11 world. We highly recommend to continue your education with Oracle
University. There is a full set of new courses covering Oracle Solaris 11:

Transition to Oracle Solaris 11
What's New in Oracle Solaris 11
What's New in Oracle Solaris 11 (Self-Study)
Oracle Solaris 11 System Administration
Oracle Solaris 11 Advanced System Administration

Get more details at the Oracle University page: http://bit.ly/OracleSolaris11Edu .

Good luck!

Introduction to Oracle Solaris 11 Hands-on Lab

3 of 3

Oracle Solaris 11 ZFS Lab
Table of Contents
Exercise Z.1: ZFS Pools
Exercise Z.2: ZFS File Systems
Exercise Z.3: ZFS Compression
Exercise Z.4: ZFS Deduplication
Exercise Z.5: ZFS Snapshots

Exercise Z.1: ZFS Pools
Task: You have several disks to use for your new file system. Create a new disk pool and a file system on top of it.

Lab: We will check the status of disk pools, create our own pool and expand it.

Our Solaris 11 installation already has a ZFS pool. It's your root file system. Check this:

root@solaris:~# zpool list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 15.9G 5.64G 10.2G 35% 1.00x ONLINE -

What do we know about this pool?

root@solaris:~# zpool status rpool
 pool: rpool
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
 c3t0d0s0 ONLINE 0 0 0

errors: No known data errors

Let's now create our own ZFS pool. What do we need for that? Just several disks and one command. We will create several files in
/dev/dsk directory; they will act as disks in our lab:

root@solaris:~# cd /dev/dsk
root@solaris:~# mkfile 200m disk0 disk1 disk2 disk3 disk4 disk5 disk6 disk7 disk8 disk9

We'll take four disks and create a ZFS pool with RAID-Z protection:

root@solaris:~# zpool create labpool raidz disk0 disk1 disk2 disk3

That was easy, wasn't it? And fast, too! Check our ZFS pools again:

root@solaris:~# zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
labpool 780M 194K 780M 0% 1.00x ONLINE -
rpool 15.9G 7.57G 8.30G 47% 1.00x ONLINE -

By the way, the file system was also created and mounted automatically:

root@solaris:~# zfs list labpool
NAME USED AVAIL REFER MOUNTPOINT
labpool 97.2K 551M 44.9K /labpool

Do you need more space? Adding disks to the existing ZFS pool is as easy as creating it:

Oracle Solaris 11 ZFS Lab

1 of 6

root@solaris:~# zpool add labpool raidz disk4 disk5 disk6 disk7

Check it again:

root@solaris:~# zfs list labpool
NAME USED AVAIL REFER MOUNTPOINT
labpool 97.2K 1.11G 44.9K /labpool

Note the increased file system's size.

Back to top

Exercise Z.2: ZFS File Systems
Task: You have to create home directories for your users; use file system quota to limit their space.

Lab: We'll create a user "joe" and set a disk quota for him.

Creating a user is pretty similar to most Unix/Linux systems. What's different is what's going on behind the scenes.

root@solaris:~# useradd -m joe
root@solaris:~# passwd joe
New Password: oracle1
Re-enter new Password: oracle1
passwd: password successfully changed for joe

In Solaris 11 behind the scenes we create a separate ZFS file system for the user (parameter -m) in /export/home and mount it
with AutoFS service at /home/username when the user logs in. Check it:

root@solaris:~# zfs list
NAME USED AVAIL REFER MOUNTPOINT
labpool 97.2K 1.11G 44.9K /labpool
rpool 7.65G 7.97G 39K /rpool
rpool/ROOT 5.59G 7.97G 31K legacy
rpool/ROOT/solaris 5.59G 7.97G 5.17G /
rpool/ROOT/solaris/var 330M 7.97G 183M /var
rpool/dump 1.03G 8.01G 1.00G -
rpool/export 1.48M 7.97G 32K /export
rpool/export/home 1.44M 7.97G 33K /export/home
rpool/export/home/joe 686K 7.97G 686K /export/home/joe
rpool/export/home/lab 760K 7.97G 760K /export/home/lab
rpool/swap 1.03G 8.01G 1.00G -

What does it mean for us, system administrators? That means we can use all kinds of ZFS features (compression, deduplication,
encryption) on a per-user basis. We can create snapshots and perform rollbacks on a per-user basis. More about that later. Now we'll
set a disk quota for joe's home directory.

root@solaris:~# zfs set quota=200m rpool/export/home/joe

Now change user to "joe" and check how much space you can use:

root@solaris:# su - joe
joe@solaris$ mkfile 110m file1
joe@solaris$ mkfile 110m file2

First file was created OK, but with the second one we've got an error: "Disk quota exceeded".

Change the quota for joe in the other window:

root@solaris:~# zfs set quota=300m rpool/export/home/joe

Then change back to the joe's window and try again:

Oracle Solaris 11 ZFS Lab

2 of 6

joe@solaris$ /usr/sbin/mkfile 110m file2

Success! As you can see, it's pretty easy to create and manage ZFS filesystems. Remember, by default Solaris 11 creates a separate
ZFS file system for each user.

Back to top

Exercise Z.3: ZFS Compression
Task: You are becoming low on your disk space. Now you know how to add more disks to your pool and expand your file system. What
other ZFS features can help you to solve this problem?

Lab: In our lab we will compress our Solaris manuals directory and see if we are able to use it after that. Create a separate filesystem
for this:

root@solaris:~# zfs create rpool/zman
root@solaris:~# zfs list | grep zman
rpool/zman 31K 7.78G 31K /rpool/zman

Set compression to "gzip" (there are options to gzip and other algorithms too--check the manual).

root@solaris:~# zfs set compression=gzip rpool/zman

Copy our Solaris manuals there (it will take some time, be patient):

root@solaris:~# cp -rp /usr/share/man/* /rpool/zman/

Compare the sizes:

root@solaris:~# du -sh /usr/share/man /rpool/zman
 149M /usr/share/man
 68M /rpool/zman

We just have saved about 55% of disk space. Not bad! Check if you are able to use the manuals after compression:

root@solaris:~# export MANPATH=/rpool/zman
root@solaris:~# man ls

Back to top

Exercise Z.4: ZFS Deduplication
Task: Users tend to keep a lot of similar files in their archives. Is it possible to save space by deduplication?

Lab: We will create a ZFS file system with deduplication turned on and see if it helps.

Let's model the following situation: we have a file system which is used as an archive. We'll create separate file systems for each user
and imagine that they store similar files there.

Remember we have created ZFS pool called labpool in the first exercise? If you have skipped that exercise, create it now:

root@solaris:~# zpool create labpool raidz disk0 disk1 disk2 disk3

Create a file system with deduplication and compression:

root@solaris:~# zfs create -o dedup=on -o compression=gzip labpool/archive

Create users' file systems (we'll call them a, b, c, d for simplicity):

root@solaris:~# zfs create labpool/archive/a
root@solaris:~# zfs create labpool/archive/b
root@solaris:~# zfs create labpool/archive/c

Oracle Solaris 11 ZFS Lab

3 of 6

root@solaris:~# zfs create labpool/archive/d

Check their "dedup" parameter:

root@solaris:~# zfs get dedup labpool/archive/a
NAME PROPERTY VALUE SOURCE
labpool/archive/a dedup on inherited from labpool/archive

Children file systems inherit parameters from their parents.

Create an archive from /usr/share/man, for example.

root@solaris:~# tar czf /tmp/man.tar.gz /usr/share/man

And copy it to four file systems we've just created. Don't forget to check deduplication rate after each copy.

root@solaris:~# cd /labpool/archive
root@solaris:/labpool/archive# ls -lh /tmp/man.tar.gz
-rw-r--r-- 1 root root 34M Nov 15 09:12 /tmp/man.tar.gz
root@solaris:/labpool/archive# zpool list labpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
labpool 1.52G 1.05M 1.52G 0% 1.00x ONLINE -
root@solaris:/labpool/archive# cp /tmp/man.tar.gz a/
root@solaris:/labpool/archive# zpool list labpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
labpool 1.52G 40.5M 1.48G 2% 1.00x ONLINE -
root@solaris:/labpool/archive# cp /tmp/man.tar.gz b/
root@solaris:/labpool/archive# zpool list labpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
labpool 1.52G 40.7M 1.48G 2% 2.00x ONLINE -
root@solaris:/labpool/archive# cp /tmp/man.tar.gz c/
root@solaris:/labpool/archive# zpool list labpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
labpool 1.52G 41.5M 1.48G 2% 3.00x ONLINE -
root@solaris:/labpool/archive# cp /tmp/man.tar.gz d/
root@solaris:/labpool/archive# zpool list labpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
labpool 1.52G 41.2M 1.48G 2% 4.00x ONLINE -

It might take a couple of seconds for ZFS to commit those changes and report the correct dedup ratio. Just repeat the command if you
don't see the results listed above.

Remember, we set compression to "on" as well when we created the file system? Check the compression ratio:

root@solaris:/labpool/archive# zfs get compressratio labpool/archive
NAME PROPERTY VALUE SOURCE
labpool/archive compressratio 1.01x -

The reason is simple: we placed in the file system files that are compressed already. Sometimes compression can save you some
space, sometimes deduplication can help.

Back to top

Exercise Z.5: ZFS Snapshots
Task: A user has accidentally deleted her file. How to restore it without getting to the backup?

Lab: The following command shows all the file systems with their snapshots:

root@solaris:~# zfs list -r -t all rpool
NAME USED AVAIL REFER MOUNTPOINT

Oracle Solaris 11 ZFS Lab

4 of 6

rpool 7.72G 7.92G 40K /rpool
rpool/ROOT 5.59G 7.92G 31K legacy
rpool/ROOT/solaris 5.59G 7.92G 5.17G /
rpool/ROOT/solaris@install 96.9M - 2.99G -
rpool/ROOT/solaris/var 330M 7.92G 183M /var
rpool/ROOT/solaris/var@install 147M - 302M -
rpool/dump 1.03G 7.95G 1.00G -
rpool/export 864K 7.92G 32K /export
rpool/export/home 832K 7.92G 34K /export/home
rpool/export/home/joe 35K 7.92G 35K /export/home/joe
rpool/export/home/lab 763K 7.92G 763K /export/home/lab
rpool/swap 1.03G 7.95G 1.00G -
rpool/zman 63.0M 7.92G 63.0M /rpool/zman

As you can see, in the freshly installed system we already have a snapshot of our original installation (solaris@install). Let's see
what can be done with snapshots. Return to the lab's home directory and create a sample text file first.txt with a text editor
(gedit, vi) or with a simple Solaris command:

root@solaris:~# cd /home/lab
root@solaris:~# echo "first line\nsecond line" > first.txt
root@solaris:~# cat first.txt
first line
second line

root@solaris:~# zfs snapshot rpool/export/home/lab@snap1
root@solaris:~# zfs list -r -t all rpool
NAME USED AVAIL REFER MOUNTPOINT
rpool 7.72G 7.92G 40K /rpool
rpool/ROOT 5.59G 7.92G 31K legacy
rpool/ROOT/solaris 5.59G 7.92G 5.17G /
rpool/ROOT/solaris@install 96.9M - 2.99G -
rpool/ROOT/solaris/var 330M 7.92G 183M /var
rpool/ROOT/solaris/var@install 147M - 302M -
rpool/dump 1.03G 7.95G 1.00G -
rpool/export 864K 7.92G 32K /export
rpool/export/home 832K 7.92G 34K /export/home
rpool/export/home/joe 35K 7.92G 35K /export/home/joe
rpool/export/home/lab 763K 7.92G 763K /export/home/lab
rpool/export/home/lab@snap1 0 - 763K -
rpool/swap 1.03G 7.95G 1.00G -
rpool/zman 63.0M 7.92G 63.0M /rpool/zman

The snapshot uses 0 bytes because we have not changed anything in your home directory. Add a couple of sentences to our file
"first.txt" and save it again.

root@solaris:~# echo "third line\nfourth line" >> first.txt

How does it look like now?

root@solaris:~# cat first.txt
first line
second line
third line
fourth line

What if we wanted to restore our old content? Just roll it back:

root@solaris:~# zfs rollback rpool/export/home/lab@snap1

Check the file:

Oracle Solaris 11 ZFS Lab

5 of 6

root@solaris:~# cat first.txt
first line
second line

It's simple, it's fast, it doesn't require much space. Actually, it doesn't require space at all until you have made some changes.

It should be noted that if you want to rollback not the latest snapshot, all more recent snapshots will be deleted (Solaris will warn you
about that). Obviously, it's possible to make snapshots on a regular basis. You don't even have to use cron(1M) for that, there is a
special package called zfs-auto-snapshot.

Food for thought: How can snapshots be used in the real life environment? Backup is the first idea that comes to mind. What else?

Back to top

Oracle Solaris 11 ZFS Lab

6 of 6

Oracle Solaris 11 Boot Environments Lab
Exercise B.1: Boot Environments
Task: You want to make updates to your system, but you want to be able to return back to the previous state.

Lab: We will use a Solaris 11 feature called Boot Environments. We'll create an extra boot environment as a backup (think saving your
state in a shooting game). Then we'll make some fatal mistakes which make our system unbootable. After we failed to boot our default
boot environment, we'll boot into the backup BE.

The only command you want to know to work with Boot Environments is beadm(1M). Start with showing all boot environments in the
system:

root@solaris:~# beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
solaris NR / 6.87G static 2011-11-14 13:13

Create a new boot environment:

root@solaris:~# beadm create solaris-backup

Check the status again:

root@solaris:~# beadm list
BE Active Mountpoint Space Policy Created
-- ------ ---------- ----- ------ -------
solaris NR / 7.13G static 2011-11-14 13:13
solaris-backup - 126.14M static 2011-11-15 11:09

Now pretend you are making some changes in the system configuration, creating and removing directories, and... Somebody has
distracted you and instead of removing a temporary directory, you have typed:

root@solaris:~# rm -rf /etc/

What??? You just have destroyed the whole /etc directory! All the configuration files are gone! (If you are brave enough, you can
remove /usr/bin too!) You have killed your system! Try to "Power Off" your virtual machine and reboot it--you'll see it won't boot. Don't
wait too long, 3-5 minutes is enough to be sure that it doesn't boot.

No worries! We have a backup! And you don't have to go and find the backup tape in your fireproof cabinet, go through all the hassles
of restoring the unbootable system... Just when your VirtualBox VM shows you the GRUB menu, choose the "solaris-backup" item
instead of the "Oracle Solaris 11 11/11" which is the default.

It boots again! What a relief!

Boot Environments have many applications: you can update your system, installing packages into inactive boot environment; create
boot environment snapshots etc. We leave it for your homework.

Back to top

Oracle Solaris 11 Boot Environments Lab

1 of 1

Oracle Solaris 11 IPS Lab
One of the main new features in Solaris 11 is a new packaging system, called IPS (Image Packaging System). In this lab we will
explore its capabilities and learn how to work with packages from System Administrator's perspecitve.

Exercise P.1: IPS Basics
Task: You want to find and install a package from Solaris repository.

Lab: We will learn some basic IPS commands used to look for a package, inquire about its content etc. When we found the package
we needed, we install it.

Let's imagine we want to do some network load testing, so we want to run the utility called 'iperf'. Try to run this command and find out
that it's not installed:

root@solaris:~# iperf

So the first thing we do is show our current publisher. The publisher is where the IPS repository is located. It can be a local directory,
an NFS mount point, an internal http ot https server, or an Internet repository like http://pkg.oracle.com/solaris. You system can have
several publishers configured.

root@solaris:~# pkg publisher

OK, it seems we are going to use our local publisher installed in our Solaris system.

Now we list our installed packages

root@solaris:~# pkg list |more

Let's see how many packages are installed

root@solaris:~# pkg list |wc

Now let's see how many packages are available in the repository

root@solaris:~# pkg list -a |wc

As you can see, our local repository is pretty small, it contains only the packages we need for this lab. If you have changed the
publisher to http://pkg.oracle.com/solaris/release as it's described in the introduction, you would see many more packages.

Let's now do a local search for iperf (among the installed packages). It will find nothing:

root@solaris:~# pkg search -l iperf

Now do the same search, without the -l flag so it goes to the repository:

root@solaris:~# pkg search iperf

Next we get some information about the package like date of creation, version number, etc.

root@solaris:~# pkg info -r iperf

And we can see exactly what files make up the package:

root@solaris:~# pkg contents -r iperf

root@solaris:~# pkg search benchmark/iperf:depend::

And now we install the iperf package:

root@solaris:~# pkg install iperf

Here we demonstrate what kind of metadata is kept in IPS:

Oracle Solaris 11 IPS Lab

1 of 3

root@solaris:~# pkg contents -t file -o owner,group,mode,pkg.size,path iperf

Now we run iperf to show it's now found:

root@solaris:~# iperf

Show how we can verify a package has not been compromised:

root@solaris:~# pkg verify iperf

Let's check the permission bits of iperf:

root@solaris:~# ls -l /bin/iperf

Let's say someone changed the permissions bits like this:

root@solaris:~# chmod 777 /bin/iperf

Let's verify again, and it will return an error:

root@solaris:~# pkg verify iperf

Now let's fix this package:

root@solaris:~# pkg fix iperf

The next few lines show an interesting way of getting a package name from a arbitrary file. Let's take vi editor for test. We first get a
SHA1 digest of '/usr/bin/vi'

root@solaris:~# digest -a sha1 /usr/bin/vi

Since the digest is saved in the package DB, we can search for that hash and see what matches it:

root@solaris:~# pkg search -l f2495fa19fcc4b8a403e0bd4fef809d031296c68

How can we use it? Imagine someone has renamed some important file to hide his tracks. Using this methid we can find out the
original name of the file.

Now the command we use to update our installed packages:

root@solaris:~# pkg update

It doesn't show anything as we are using the original "release" repository. If we had the "support" repository configured, it would find all
the updates and install them.

Lastly, we show how you can view a history of package commands:

root@solaris:~# pkg history

And a verbose history:

root@solaris:~# pkg history -l|more

And finally, we uninstall the iperf package:

root@solaris:~# pkg uninstall iperf

Exercise P.2: IPS and Boot Environments
Another important feature of IPS is the ability to perform all package related operations not only on the current boot environment, but
also on a mounted one. Imagine you want to update your system, but you want to keep your current state untouched to be able to
return back to safety in case something goes wrong. Also you want to minimize the downtime.

Create a new boot environment for the updated system:

Oracle Solaris 11 IPS Lab

2 of 3

root@solaris:~# beadm create solaris-updated

In real life you might want to use some naming policy for the BEs, like timestamping them.

Now mount this boot environment in your file system:

root@solaris:~# beadm mount solaris-updated /mnt

Now you can perform any package operations with this mounted boot environment. As we don't have updates in our repository, we just
install a package (the same iperf package), check that it's not available in our current BE and then reboot the system with the updated
BE and make sure the package is installed there.

root@solaris:~# pkg -R /mnt install iperf

Now make sure the new boot environment is active on reboot:

root@solaris:~# beadm activate solaris-updated

Then reboot the system and check if iperf is available.

Imagine how much downtime you can save when using this method to update your system!

Oracle Solaris 11 IPS Lab

3 of 3

Oracle Solaris 11 Networking Lab
In Solaris 11 several new networking commands were added, some management practices have changed to make network
administration easier and more robust. In this lab we will learn some basic networking commands, compare them to the old ones and
also work with network virtualization features, which are brand new in Solaris 11.

Exercise N.1: Solaris 11 Networking Basics
Task: You have to configure network interfaces and network services (DNS) in Solaris.

Lab: We will configure network interfaces in manual mode. We will use the new way of configuring DNS and also we will import the old
configuration. We will use a new feature called Vanity Naming with allows you to give network interfaces any names you want. Note
that when we use these new Solaris 11 commands, all the changes are persistent and will sustain a reboot.

First, we'll change network management to Manual mode:

root@solaris:~# netadm enable -p ncp DefaultFixed

Show available physical network interfaces:

root@solaris:~# dladm show-phys

Create an interface with static IPv4 address:

root@solaris:~# ipadm delete-ip net0
root@solaris:~# ipadm create-ip net0
root@solaris:~# ipadm show-if
root@solaris:~# ipadm create-addr -T static -a local=10.9.8.7/24 net0/addr
root@solaris:~# ipadm show-addr

Create an interface and get the address from DHCP:

root@solaris:~# ipadm delete-ip net0
root@solaris:~# ipadm create-ip net0
root@solaris:~# ipadm create-addr -T dhcp net0/addr
root@solaris:~# ipadm show-addr

Create an interface with auto-generated IPv6 configuration:

root@solaris:~# ipadm delete-ip net0
root@solaris:~# ipadm create-ip net0
root@solaris:~# ipadm create-addr -T addrconf net0/addr
root@solaris:~# ipadm show-addr

Configure the default route:

root@solaris:~# route -p add default 10.0.2.2

Activate DNS configuration:

root@solaris:~# svccfg -s dns/client \'setprop config/nameserver = net_address: 192.168.1.1\'
root@solaris:~# svccfg -s dns/client \'setprop config/domain = astring: \"example.com\"\'
root@solaris:~# svccfg -s name-service/switch \'setprop config/host = astring: \"files dns\"\'
root@solaris:~# svcadm refresh name-service/switch
root@solaris:~# svcadm refresh dns/client

Alternatively, you can edit the usual files resolv.conf and nsswitch.conf, but you have to import them into the naming service
configuration:

root@solaris:~# nscfg import -f svc:/system/name-service/switch:default
root@solaris:~# nscfg import -f svc:/network/dns/client:default

Oracle Solaris 11 Networking Lab

1 of 3

root@solaris:~# svcadm refresh dns/client

Do you remember the days when you were a junior Solaris system administrator and wondered why all network interfaces in Solaris
have these funny names? le, bge, ce, xge, e1000g.... Now, as you can see, they all are called net0, net1, net2, ... Much
simpler, right? Even more than that: you can give your interfaces your own names. Here is the example. Show what we've got now:

root@solaris:~# dladm show-phys
root@solaris:~# ipadm show-addr

We now decide to rename net0 to foo1. Start by deleting the net0 IP interface

root@solaris:~# ipadm delete-ip net0

...now rename the NIC

root@solaris:~# dladm rename-link net0 foo1
root@solaris:~# dladm show-phys

Add back in the IP interface

root@solaris:~# ipadm create-ip foo1

And put it under DHCP control like it was before

root@solaris:~# ipadm create-addr -T dhcp foo1/dhaddr

root@solaris:~# ipadm show-addr

Cleaning up... Undo it all

root@solaris:~# ipadm delete-ip foo1
root@solaris:~# dladm rename-link foo1 net0
root@solaris:~# ipadm create-ip net0
root@solaris:~# ipadm create-addr -T dhcp net0/dhaddr
root@solaris:~# ipadm show-addr

One word of advice: having this kind of freedom, please try to avoid long discussions about network interface naming, similar to what
you have already had regarding host naming policies. :-)

Exercise N.2: Network Virtualization
Task: You want to create Virtual Network Interface Cards (VNICs) to use them with your Zones. You want to build and manage your
application's network infrastructure completely inside the box for development and testing purposes.

Lab: We will create VNICs, assign IP addresses to them and learn how to limit bandwidth on them.

First we show the links. Links can be physical or virtual. Note that for physical NICs, we use a new naming scheme net0, net1, etc. that
hides the actual device name.

root@solaris:~# dladm show-link

Show only the physical ethernet NICs:

root@solaris:~# dladm show-ether

And to see the actual hardware devices used for the netX NICs:

root@solaris:~# dladm show-phys

The next command shows a bit more information like the physical location:

root@solaris:~# dladm show-phys -L

Oracle Solaris 11 Networking Lab

2 of 3

So now we create a VNIC that we call vnic1, using net0 as it's interface Note that VNICs are first-class NICs in terms of visibility (e.g.
snoop)

root@solaris:~# dladm create-vnic -l net0 vnic1

Show the VNICs:

root@solaris:~# dladm show-vnic

Show how easy it is to limit bandwith on a VNIC:

root@solaris:~# dladm set-linkprop -p maxbw=40 vnic1
root@solaris:~# dladm show-vnic

Now we create an IP interface. This is analgous to plumbing the interface:

root@solaris:~# ipadm create-ip vnic1

Now we assign a persistent IP address to the VNIC:

root@solaris:~# ipadm create-addr -T static -a 10.2.3.4 vnic1/v4static

Ping the VNIC:

root@solaris:~# ping 10.2.3.4

Show all available datalinks, both physical and virtual

root@solaris:~# dladm show-link

If you want to know more about the internals of these commands, here is how to show the "database" files where the dladm and ipadm
commands keep their persistent data:

root@solaris:~# ls -lrt /etc/dladm /etc/ipadm

But remember: you are not supposed to edit these files manually, always use dladm and ipadm commands!

Finally list all IP addresses:

root@solaris:~# ipadm show-addr

Now we tear down what we've just created:

root@solaris:~# ipadm delete-addr vnic1/v4static
root@solaris:~# ipadm delete-ip vnic1
root@solaris:~# dladm delete-vnic vnic1
root@solaris:~# dladm show-link

Now you see how new networking commands work. Of course, you can still use the old-style ifconfig, but the new commands are
easier to use and, most importantly, they make presistent changes.

Find more food for thought and inspiration here:

How to Script Oracle Solaris 11 Zones Creation for a Network-In-a-Box Configuration
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-118-s11-script-zones-524499.html
How to Restrict Your Application Traffic Using Oracle Solaris 11 Network Virtualization and Resource Management
http://www.oracle.com/technetwork/articles/servers-storage-admin/o11-095-s11-app-traffic-525038.html

Oracle Solaris 11 Networking Lab

3 of 3

Oracle Solaris 11 Virtualization Lab
Table of Contents
Exercise V.1: Zones
Exercise V.2: Inside the Zone
Exercise V.3: Zone Cloning
Exercise V.4: Zone Monitoring
Exercise V.5: Resource Management

Exercise V.1: Zones
Task: Your development team wants a separate environment to develop their new application.

Lab: We are going to use Solaris virtualization technology called Solaris Zones. First, we have to create a filesystem where all the
zones will be located. In Solaris 11 it must be a ZFS filesystem.

root@solaris:~# zfs create -o compress=gzip -o dedup=on -o mountpoint=/zones rpool/zones

(Now we know how to save space with ZFS compression and dedup options!)

Check if it's created and mounted:

root@solaris:~# zfs list rpool/zones
NAME USED AVAIL REFER MOUNTPOINT
rpool/zones 31K 7.92G 31K /zones

Create a zone with a minimum set of parameters: name (in our case it will be zone1) and zonepath, where the zone's files will be
located.

root@solaris:~# zonecfg -z zone1
zone1: No such zone configured
Use 'create' to begin configuring a new zone.
zonecfg:zone1> create
create: Using system default template 'SYSdefault'
zonecfg:zone1> set zonepath=/zones/zone1
zonecfg:zone1> exit

As simple as that! By default, the zone will be configured with Exclusive-IP (that means it will use its own IP stack) and a VNIC will be
automatically created for the zone.

To check the status of our newly created zone:

root@solaris:~# zoneadm list -cv
 ID NAME STATUS PATH BRAND IP
 0 global running / solaris shared
 - zone1 configured /zones/zone1 solaris excl

The zone is configured, we can install and boot it right now. But before the installation we'll configure a profile for the Solaris instance
which will be running inside the zone. We are trying to avoid configuring the zone interactively and have it ready for use right after the
first boot.

root@solaris:~# sysconfig create-profile -o zone1-profile.xml

This command will bring you to the interactive dialog very similar to the standard Solaris installaion. You will have to enter:

Computer Name (hostname for the zone): zone1
Network configuration: choose "Automatically"
Time zone: choose your time zone from the list
Date: confirm the current date

Oracle Solaris 11 Virtualization Lab

1 of 7

Root password: oracle2011
New user account details: real name, login name and password. This will be the first user of the zone. We have entered "Zone
User", "zuser1", "oracle1"

Now, when the zone's profile is created, we can install the zone and initialize it using this profile.

root@solaris:~# zoneadm -z zone1 install -c /home/lab/zone1-profile.xml
A ZFS file system has been created for this zone.
Progress being logged to /var/log/zones/zoneadm.20111113T200358Z.zone1.install
 Image: Preparing at /zones/zone1/root.

 Install Log: /system/volatile/install.4418/install_log
 AI Manifest: /tmp/manifest.xml.NVaaNi
 SC Profile: /tmp/zone1-profile.xml
 Zonename: zone1
Installation: Starting ...

Here you can take a break. The installation will take about 10 minutes, depending on your network connection.

 ...Long output is skipped...
Next Steps: Boot the zone, then log into the zone console (zlogin -C)
to complete the configuration process.

Check the status again:

root@solaris:~# zoneadm list -cv
 ID NAME STATUS PATH BRAND IP
 0 global running / solaris shared
 - zone1 installed /zones/zone1 solaris excl

It's time to boot our zone:

root@solaris:~# zoneadm -z zone1 boot
root@solaris:~# zoneadm list -cv
 ID NAME STATUS PATH BRAND IP
 0 global running / solaris shared
 1 zone1 running /zones/zone1 solaris excl

Note the zone's status has changed to "running".

Now log into our zone's console (note -C). You will have to wait a couple of minutes while the system is initializing services for the first
time.

root@solaris:~# zlogin -C zone1
[Connected to zone 'zone1' console]

You will get the standard Solaris login prompt. Congratulations! You've just configured "virtualization within virtualization" using Oracle
technologies: Solaris zones within Oracle VirtualBox.

Try to login using root's credentials (root/oracle2011). Here is the result:

zone1 console login: root
Password:
Roles can not login directly
Login incorrect
Nov 13 15:23:07 zone1 login: login account failure: Permission denied

A-ha! This is a new Solaris 11 security feature called "root as a role". That means that you can't login into a system as "root". You have
to use normal user's credentials and only then you will be able to use "sudo" or "pfexec" according to your roles and privileges.

Try to login again with zuser1/oracle1.

Oracle Solaris 11 Virtualization Lab

2 of 7

Oracle Corporation SunOS 5.11 11.0 November 2011
zuser1@zone1:~$

Success!

Note: to escape from the zone's console use: ~. (tilde period).

Back to top

Exercise V.2: Inside the Zone
Task: You have to install some application packages in the zone and create some users.

Lab: Log in in the zone, create a user and install a web server application.

root@solaris:~# zlogin zone1
root@zone1:~#

Play around with the usual sysadmin commands. How can you tell if you are in a zone or not? First, try ps -ef. Do you see anything
unusual? Yes, you are right, the process IDs don't start with 0, but with some big number. Other than that, no visible difference
between the normal Solaris installation and the zone. Try uname -a, psrinfo, cat /etc/release ...

Now let's do something useful with the zone. Like running a web server, for example. Let's install and run Apache.

root@zone1:~# pkg list -a *apache*
. . .Skipped. . .
web/server/apache-22 2.2.16-0.151.0.1 known ----.
. .Skipped. . .
root@zone1:~# pkg install apache-22
. . .Skipped. . .

We've installed it successfully, but it's not running yet.

root@zone1:~# svcs -a | grep apache
disabled 6:31:42 svc:/network/http:apache22

Start the Apache web server:

root@zone1:~# svcadm enable apache22
root@zone1:~# svcs -a | grep apache
online 6:34:03 svc:/network/http:apache22

Check if it's working from your global Solaris zone (your Solaris desktop): start Firefox and enter your zone's IP address into the URL
field: 10.0.2.16. "It works!" -- the page usually reads. In our current VirtualBox configuration (with NAT networking) the zone is not
visible from outside, but you can always try to change your VirtualBox configuration to Bridged networking and give your zone an IP
address from your local network. (Do try this at home!).

Check if it's your zone who is talking. Go back to the zone's terminal window and change your web server homepage (I'm using vi here,
as we don't have many choices in a freshly installed zone. If you are not familiar with vi, check our Vi Quick Reference below):

root@zone1:~# vi /var/apache2/2.2/htdocs/index.html

Write here something like "This is Zone1 and it works!", save the file and reload the page in Firefox in your Solaris desktop. Did it
work? Congratulations!

Vi Quick Reference

If you're unfamiliar with vi, following are a few common
keyboard commands to get you through this exercise:
i = switch to Insert mode

Oracle Solaris 11 Virtualization Lab

3 of 7

Use Insert mode to type in your text.

Esc = switch to Command mode

In Command mode use:
k = up
j = down
w = right or forward one word
b = left or back one word
l = right 1 char
h = left 1 char
x = delete 1 char
u = undo
dd = delete entire current line
:w = write (save) the current file
:wq = write and quit
:w! = write to a read-only file
:q! = quite ignoring changes (do not write)

What else do we need? Try to create users in the zone.

root@zone1:~# useradd -m jack
root@zone1:~# passwd jack
New Password: oracle1 (will not be displayed)
Re-enter new Password: oracle1 (will not be displayed)
passwd: password successfully changed for jack
root@zone1:~# su - jack
Oracle Corporation SunOS 5.11 11.0 November 2011
jack@zone1:~$ ls
local.cshrc local.login local.profile
jack@zone1:~$

Looks good! Try to login from your global zone (open another window on your Solaris desktop):

lab@solaris:~$ ssh -l jack 10.0.2.16

(It's a small letter L here, not the digit one)

For your homework: compare global and non-global zones installations. How many packages are installed in both? How many services
are running? Check if you can login into the global zone with the zone user's (jack) credentials. Check if you can use your zone's root
password in the global zone (of course, if they are different).

Back to top

Exercise V.3: Zone Cloning
Task: Your development team wants a copy of this environment for testing purposes.

Lab: We will configure a new zone ('zone2') and then clone it from the existing zone1.

This time let's configure the zone in one line:

root@solaris:~# zonecfg -z zone2 "create; set zonepath=/zones/zone2; exit"

Check:

root@solaris:~# zoneadm list -cv
 ID NAME STATUS PATH BRAND IP
 0 global running / solaris shared
 1 zone1 running /zones/zone1 solaris excl

Oracle Solaris 11 Virtualization Lab

4 of 7

 - zone2 configured /zones/zone2 solaris excl

Before cloning we have to shutdown our running zone1:

root@solaris:~# zoneadm -z zone1 shutdown

Then we create the new zone's profile. Start the System Configuration Tool and repeat all the configuration steps you did for zone1.
Just change Computer Name to "zone2", user name to "zuser2" and password to "oracle2".

root@solaris:~# sysconfig create-profile -o zone2-profile.xml

Now clone zone1 and configure zone2 automatically using this profile:

root@solaris:~# zoneadm -z zone2 clone -c /home/lab/zone2-profile.xml zone1
root@solaris:~# zoneadm list -cv
 ID NAME STATUS PATH BRAND IP
 0 global running / solaris shared
 1 zone1 installed /zones/zone1 solaris excl
 2 zone2 installed /zones/zone2 solaris excl

Now boot both zones:

root@solaris:~# zoneadm -z zone1 boot
root@solaris:~# zoneadm -z zone2 boot
root@solaris:~# zoneadm list -cv
 ID NAME STATUS PATH BRAND IP
 0 global running / solaris shared
 1 zone1 running /zones/zone1 solaris excl
 2 zone2 running /zones/zone2 solaris excl

Success! And it was faster than the initial installation, wasn't it?

After it's done, login into zone2.

root@solaris:~# zlogin zone2

First of all, what about our Apache server?

root@zone2:~# pkg list -a | grep apache
. . .Skipped. . .
web/server/apache-22 2.2.20-0.175.0.0.0.2.537 i--

Great! It's installed already! Check if it's running:

root@zone2:~# svcs *apache*
online 11:48:47 svc:/network/http:apache22

Try the zone2 address (10.0.2.17) in Firefox in the global zone.

"This is Zone1 and it works!" - of course, we have cloned not only installed applications, but also their configurations. Change it to
"Zone2", just for consistency sake.

root@zone2:~# vi /var/apache2/2.2/htdocs/index.html

Back to top

Exercise V.4: Zone Monitoring
Task: Your departments want to know how much resources do they use to pay their fair share for the datacenter infrastructure.

Lab: Some familiar Solaris commands now include a -Z parameter to help you to monitor zones behavior. Try ps -efZ and prstat -Z to
take a look. Try also a new command zonestat to show zone statistics.

Oracle Solaris 11 Virtualization Lab

5 of 7

root@solaris:~# zonestat -z zone1,zone2 5

Collecting data for first interval...
Interval: 1, Duration: 0:00:05
SUMMARY Cpus/Online: 1/1 PhysMem: 2047M VirtMem: 3071M
 ---CPU---- --PhysMem-- --VirtMem-- --PhysNet--
 ZONE USED %PART USED %USED USED %USED PBYTE %PUSE
 [total] 0.05 5.45% 968M 47.3% 1251M 40.7% 0 0.00%
 [system] 0.01 1.51% 287M 14.0% 735M 23.9% - -
 zone1 0.00 0.16% 73.8M 3.60% 66.3M 2.16% 0 0.00%
 zone2 0.00 0.13% 73.9M 3.61% 67.2M 2.18% 0 0.00%

Note the parameters you can observe with zonestat: CPU utilization, physical and virtual memory usage, network bandwidth
utilization.

Back to top

Exercise V.5: Resource Management
Task: You want to control the zones' resource usage. You want to assign certain amount of processing power to each zone.

Lab: We now know how to create and clone zones. Now let's try to cap CPU resources in one zone to demonstrate the basics of
resource management in Solaris.

First, run a simple CPU-consuming script in the zone1:

root@solaris:~# zlogin zone1 "bash -c 'while true ; do date > /dev/null ; done'"

Note that we are simply using zlogin to pass the command to the zone.

What's going on in the global zone? Open another window, become root and check:

root@solaris:~# vmstat 5

Idle is 0, system time is around 70%. Not good.

root@solaris:~# zonestat 5

Zone1 consumes 70-80% of total resources, the rest is spent in global zone (most likely serving zone1's requests). We decided to
reduce the zone1's resource consumption and give it only 50% of our CPU cycles.

root@solaris:~# zonecfg -z zone1
zonecfg:zone1> add capped-cpu
zonecfg:zone1:capped-cpu> set ncpus=0.5
zonecfg:zone1:capped-cpu> end
zonecfg:zone1> exit
root@solaris:~# zoneadm -z zone1 reboot

After zone1 reboots, log in into it again and repeat the same steps: run the bash script mentioned above and then run zonestat 5 in
another window.

root@solaris:~# zlogin zone1 "bash -c 'while true ; do date > /dev/null ; done'"

root@solaris:~# zonestat 5

Do you see the difference? Are you happy with the result?

Is it also possible to change this CPU cap parameter on the fly:

root@solaris:~# prctl -n zone.cpu-cap -r -v 25 -i zone zone1

Check if it works:

Oracle Solaris 11 Virtualization Lab

6 of 7

root@solaris:~# zonestat 5

In your virtual appliance there is a simple tool which allows you to visualize the zones workloads. It simply pipes the zonestat output
into the popular open source program gnuplot. Try this:

root@solaris:~# zoneplot

Don't forget to stop the infinite loop in your zone! Or simply halt the zone.

root@solaris:~# zoneadm -z zone1 halt

Other resources can be capped this way as well: memory, swap, number of threads etc. Again, think about how it can be used in real
life situations?

Back to top

Oracle Solaris 11 Virtualization Lab

7 of 7

Oracle Solaris 11 Security Lab
Table of Contents
Exercise S.1: Introduction to Solaris RBAC and Privileges
Exercise S.2: A Closer Look at Solaris Privileges
Exercise S.3: Process Privileges and Rights
Exercise S.4: SMF, Process Privileges and Authorizations

Introduction
In this lab we we take quick tour of some of Oracle Solaris security features that can help you to protect your applications and your
system. We will look at the following technologies:

Privileges
RBAC (Rights and Authorizations)
Integration with SMF (Service Management Facility)

For lab exercises S.3 and S.4, apache 2.2 is required. Check if it's installed already:

root@solaris:~# pkg list *apache*
NAME (PUBLISHER) VERSION IFO
web/server/apache-22 2.2.20-0.175.0.0.0.2.537 i--

If Apache web server package is not installed, install it using the following command:

root@solaris:~# pkg install apache-22

Exercise S.1: Introduction to Solaris RBAC and Privileges
Expected duration: 20 minutes

The goal of this exercise is to gain a basic understanding of the RBAC/privileges framework in Solaris.

Background Information

Thanks to Joerg Moellenkamp and his post on Less known Solaris features: RBAC and Privileges - Part 1: Introduction for the
following introduction.

The Story of root

And then there was root. And root was almighty. And that wasn't a good thing. root was able to control the world without any
control. And root needed control. It was only a short chant between the mere mortals and root. Everybody with the knowledge of
the magic chant was able to speak through root.

But root wasn't alone. root had servants called daemons. Some of one them needed divine powers to do their daily job. But root
was an undividable being. So the servants had to work with the powers of root. But the servants were not as perfect as root: Some of
the servants started to do everything mere mortals said to them if they only said more than a certain amount of prayers at once.

Superuser

The old model of rights in a Unix systems is based on a duality. There is the superuser and the normal user. The normal users have a
restricted set of rights in the system, the superuser has an unrestricted set of rights. To modify the system, a normal user has to login
as root directly or assume the rights of root (by su -). But such a user has unrestricted access to the system. Often this isn't
desirable. Why should you enable an operator to modify a system, when all he or she has do to on the system is create some users
from time to time. You've trained them to do useradd or passwd. What do you do when they get too curious? They need root
privileges to create a user or change a password. You need some mechanisms to limit this operator.

But it gets more problematic. Programs have to modify the system to work. A web server is a good example. You expect it to use port

Oracle Solaris 11 Security Lab

1 of 12

80, ports beneath port number 1024 are privileged ports. You need special rights to modify the structures of the system to listen to port
80. A normal user doesn't have these rights. So the web server has to be started as root. The children of this process drop the rights of
root by running with a normal user. But there is this single instance of the program with all the rights of the superuser. This process has
much more rights than needed, a possible attack vector for malicious users.

Least Privilege

There is a concept in security known as least privilege. You give someone only least amount of privileges, only enough to do the tasks
they are assigned. An example of the real world - you won't give the janitor the master key for all the rooms on the campus, when all
he has to do is work in Building C. The other way around - there are some trusted people who have access to all rooms in case of
emergency.

You have the same concept in computer security. Everyone should have only the least amount of privileges in the system to do their
job. The concept of the superuser doesn't match to this, it's an all or nothing model. You are either an ordinary user with basic
privileges or you are a user with unrestricted rights. There is nothing in between. This doesn't follow the least privileges model.

Role Based Access Control (RBAC)

The example with the key for the janitors is a good example. Let's imagine a large campus. You have janitors responsible for the
plumbing (let's call them Lenny and Carl), for the park (let's call him Homer), for the security system (let's call her Marge and Lenny
helps her from time to time).

These roles have different sets of privileges: For example the plumbing janitors have access to all the rooms of the heating system.
The janitor for the park has only access to the garage with the lawnmower.

When they start to work in their job, they assume a role. From the privilege perspective it's not important who is the person, but what
role the person has assumed. Lenny punches the clock and assumes the role of the plumbing janitor for the next 8 hours. And while he
is doing its job he uses the privileges inherent to the role. But he also has to do tasks in his office or in his workshop. It's his own room,
so he doesn't need the special privileges.

Role Based Access Control is quite similar. You login to the system, and then you start to work. You read your emails (no special
privileges needed), you find an email "Create user xy45345. Your Boss". Okay, now you need special privileges. You assume the role
of a User Administrator and create the user. Job done, you don´t need the privileges anymore. You leave the role and write the "Job
done" mail to your boss with your normal user's privileges.

Role Based Access Control is all about this: Defining roles, giving them privileges and assigning users to this roles.

Privileges

I've used the word quite often in this introduction so far. What is a privilege? A privilege is the right to do something. For example,
having the keys for the control panel of the heating system.

Unix users are nothing different. Every user has privileges in a Unix system. A normal user has the privilege to open, close, read, write
and delete files when he is allowed to do this (Because he created it, because he belongs to the same group as the creator of the file
or the creator gave everybody the right to do it). This looks normal to you, but it's privilege based on the login credentials you gave to
system. You don't have the privilege to read all files on the system or to use a port number 1024.

Every thing done in the system is based on these privileges. Solaris has separated the tasks into many privilege sets. At the moment,
there are more than 80 different privileges in the system. Normal users have only a basic set of privileges, while root has all of them.

In Solaris the model has changed, privileges and users aren't connected with each other. You can give any user the power of the
traditional "root user", and restrict the privileges of the root user. Solaris is configured to look as a traditional super user model due to
its binary compatibility guarantee that mandates that the standard configuration of the system resembles the superuser model. There
are applications out there, which assume that only the root user or the UID 0 has unrestricted rights and exit if they are started by a
different user.

The only thing that is special with UID 0 in Solaris is that it's the owner of the system configuration files, and thus has the capability to
change system configurations.

RBAC and Privileges in Solaris

Oracle Solaris 11 Security Lab

2 of 12

Both features have their roots in the Trusted Solaris product. Trusted Solaris was a version of Solaris to ensure the highest security
standards. Today, these mechanisms are part of the normal Solaris in conjunction with the Trusted Extensions. So RBAC is a really old
feature - it has been in Solaris since Solaris 8 (published in 2000). Privileges found their way into the generic Solaris with the first
availability of Solaris 10 in February 2005.

Lets start with some basic concepts for RBAC:

Rights: A right is the permission, to execute an executable as an privileged user. For example the permission to execute the
command reboot as root.
Authorization: A permission that enables a user or role to perform a class of actions that could affect security. For example,
security policy at installation gives ordinary users the solaris.device.cdrw authorization. This authorization
enables users to read and write to a CD-ROM device.
Right Profiles: A collection of administrative capabilities that can be assigned to a role or to a user. A rights profile can consist
of authorizations, of commands with security attributes, and of other rights profiles. Rights profiles offer a convenient way to
group security attributes.
Role: A special identity for running privileged applications. The special identity can be assumed by assigned users only. In a
system that is run by roles, superuser is unnecessary. Superuser capabilities are distributed to different roles.

Lets take a closer look at RBAC and roles:

Open a terminal window by right clicking any point in the background of the desktop, and select "Open Terminal" in the pop-up menu.

Lets look at what roles are assigned to our lab user. In a terminal, run the following command:

lab@solaris:~$ roles
root

As you can see here you should be assigned the role root, it allows us to assume the root role. In Solaris 11 root is not a user but
rather a role. So you have to login to the system as a normal user and then assume the root role with the su command.

In a terminal window type as follows:

lab@solaris:~$ userattr type root
role
lab@solaris:~$ auths root
solaris.*

As you can see here root is defined as a role with all solaris authorizations, the effect of this is similar to the old almighty root user.
This is put in place for backwards compatibility.

And as your user is assigned the root role, you can try this by assuming the root role:

lab@solaris:~$ whoami
lab
lab@solaris:~$ su
Password: <root password>
lab@solaris:~# whoami
root
lab@solaris:~# who am i
lab pts/1 Apr 21 07:32 (:0.0)
lab@solaris:~# exit
exit
lab@solaris:~$

Lets add a new user, Joe Doe to our system:

lab@solaris:~$ useradd -d /export/home/jdoe -m -c "Joe Doe" jdoe
UX: useradd: ERROR: Cannot update system - login cannot be created.

As you can see here we are not allowed to use the useradd command. We will have to use su to execute useradd with "root"
privileges, and assign missing rights to our account. The su command will prompt you for the root password.

Oracle Solaris 11 Security Lab

3 of 12

lab@solaris:~$ su root -c "usermod -K profiles='User Management' lab"
Password: <your root password>

lab@solaris:~$ userattr profiles lab
User Management

As you can see, we now have the right to manage users. To take advantage of this right, we will invoke a profile shell, e.g. pfbash,
and create the new user, jdoe.

lab@solaris:~$ pfbash
lab@solaris:~$ useradd -m -c "Joe Doe" jdoe

To change the user's password we have to have User Security profile assigned, but it is not advised to assign it to a regular user
because it allows the user to change passwords of other users, including more powerful ones. User Management profile is safe,
because you can only delegate what you already have. Therefore, let's change the password of the new user using root role:

lab@solaris:~$ su root -c passwd jdoe
Password: <root password>
New Password: abc123
Re-enter new Password: abc123
passwd: password successfully changed for jdoe
lab@solaris:~$ su - jdoe
Password: abc123
Oracle Corporation SunOS 5.11 11.0 November 2011
jdoe@solaris:~$ roles
No roles
jdoe@solaris:~$ su root
Password: <root password>
Roles can only be assumed by authorized users
su: Sorry
jdoe@solaris:~$ exit
lab@solaris:~$

NEW in Role Authentication in Solaris 11

Role Authentication procedure has changed in Solaris 11. Running earlier Solaris version, including Oracle Solaris 11 Express, user
had to know role password in order to assume the role. Oracle Solaris 11 includes the ability to specify whether to use the role
password or user password when a user wants to assume a given role. Administrators can specify either 'user' or 'role' for the 'roleauth'
keyword. If roleauth is not specified, 'role' is implied. Any newly created roles will be 'user' by default.

Summary

As you can see here jdoe doesn't have any roles assigned to him and he can't use su to assume the root role. We'll get back to him
later. Now let's move on to a closer look at privileges in Exercise 2.

Exercise S.2: A Closer Look at Solaris Privileges
Expected duration: 20 minutes

The goal of this exercise is to understand Solaris privileges and how to use them.

Background Information

Privileges

What are Privileges? Privileges are rights to do an operation in the kernel. These rights are enforced by the kernel. Whenever you do
something within the kernel the access is controlled by privileges.

List of privileges

Oracle Solaris 11 Security Lab

4 of 12

contract_event, contract_identity, contract_observer, cpc_cpu, dtrace_kernel, dtrace_proc, dtrace_user, file_chown, file_chown_self,
file_dac_execute, file_dac_read, file_dac_search, file_dac_write, file_downgrade_sl, file_flag_set, file_link_any, file_owner, file_setid,
file_upgrade_sl, graphics_access, graphics_map, ipc_dac_read, ipc_dac_write, ipc_owner, net_access, net_bindmlp, net_icmpaccess,
net_mac_aware, net_mac_implicit, net_observability, net_privaddr, net_rawaccess, proc_audit, proc_chroot, proc_clock_highres,
proc_exec, proc_fork, proc_info, proc_lock_memory, proc_owner, proc_priocntl, proc_session, proc_setid, proc_taskid, proc_zone,
sys_acct, sys_admin, sys_audit, sys_config, sys_devices, sys_ipc_config, sys_linkdir, sys_mount, sys_iptun_config, sys_dl_config,
sys_ip_config, sys_net_config, sys_nfs, sys_ppp_config, sys_res_config, sys_resource, sys_smb, sys_suser_compat, sys_time,
sys_trans_label, virt_manage, win_colormap, win_config, win_dac_read, win_dac_write, win_devices, win_dga, win_downgrade_sl,
win_fontpath, win_mac_read, win_mac_write, win_selection, win_upgrade_sl, xvm_control

Legend: blue - basic privilege

Conventional Unix

On conventional Unix systems you have a root user and root has all privileges. And you have a normal user, who has only a limited
set of privileges. Sometimes you need the rights of an admin to do some tasks. You don't even need to administer the system.

lab@solaris:~$ ls -l /usr/sbin/traceroute
-r-sr-xr-x 1 root bin 46868 2010-11-05 08:02 /usr/sbin/traceroute
lab@solaris:~$ ls -l /usr/sbin/ping
-r-sr-xr-x 1 root bin 55940 2010-11-05 08:01 /usr/sbin/ping

You can use traceroute and ping because both tools are setuid tools. setuid allows a process to run with a specific userid
and all the privileges that come with that user. In the case of setuid to root user the process would have root's privileges. A setuid
program in Solaris can be privilege-aware and hence only retain the privileges needed for the operation.

You need a special privilege to ping - the privilege to use access ICMP. On conventional systems this right is reserved for the root
user. Thus the ping program has to be executed with the rights of root. The problem: At the time of the execution of the program,
the program has all the rights of the user. Not only to access ICMP, but the program is capable of doing everything on the system, such
as deleting files in /etc. This may not a problem with ping or traceroute but think about larger programs. An exploit in a setuid
program can lead to the escalation of the user's privileges.

Let's have a look at the privileges of an ordinary user. There is a tool to get the privileges of any given process in the system, it's called
ppriv. The variable $$ is a shortcut for the actual process id (in this case the process id of the user's shell):

lab@solaris:~$ ppriv $$
1684: -bash
flags = <none>
 E: basic
 I: basic
 P: basic
 L: all

To find out what "basic" means, we can add -v to the ppriv flag to expand the aliases:

lab@solaris:~$ ppriv -v $$
1684: -bash flags = <none>

E: file_link_any,file_read,file_write,net_access,proc_exec,proc_fork,proc_info,proc_session
I: file_link_any,file_read,file_write,net_access,proc_exec,proc_fork,proc_info,proc_session
P: file_link_any,file_read,file_write,net_access,proc_exec,proc_fork,proc_info,proc_session
L: contract_event,contract_identity,contract_observer,cpc_cpu,dtrace_kernel,dtrace_proc,....

Every process in the system has four sets of privileges that determine if a process is enabled to use a privilege or not. The theory of
privileges is quite complex. I would suggest to read the chapter How Privileges Are Implemented" in the Developers Guide to Oracle
Solaris Security to learn how each set controls or is controlled other privilege sets.

At this time, I want only to explain the meaning of the first letter:

Oracle Solaris 11 Security Lab

5 of 12

E: Effective privileges set
I: Inheritable privileges set
P: Permitted privileges set
L: Limit privileges set

You can think about the privilege sets as keyrings. The effective privilege set are the keys the janitor has on its keyring. The permitted
privilege set are the keys the janitor is allowed to put on its keyring. The janitor can decide to remove some of the keys. Perhaps he
thinks: I work only in room 232 today, I don't need all the other keys. I'll leave them in my office. When he looses his keyring he lost
only the control of this single room, not about the complete campus.

The inheritable privilege set is not really a keyring. The janitor thinks about his new assistant: "Good worker, but I will not give him my
key for the room with the expensive tools." The limited privilege set is the overarching order from the boss of janitor to his team
leaders: "You are allowed to give your assistant the keys for normal rooms, but not for the rooms with all this blinking boxes from
Oracle".

At the moment the most interesting set is the E:. This is the effective set of privileges. This is the set of privilege effectively available to
process. Compared to the full list of privileges mentioned above the set is much smaller. But this matches your experience when you
use a Unix system.

Lets see how it looks when we assume the root role:

lab@solaris:~$ su -
Password: <root password>
Oracle Corporation SunOS 5.11 11.0 November 2011
You have new mail.
root@solaris:~# ppriv $$
1779: -bash
flags = <none>
 E: all
 I: basic
 P: all
 L: all

This role has much more privileges. The effective set is much broader. When we assume the root role we assume all privileges in the
system. NOTE: This is strictly to provide backwards compatibility and is not the recommended usage going forward.

Lets add some privileges to our jdoe user, let's assume that he is a software developer that needs access to DTrace to debug some
applications.

First lets try to use DTrace as jdoe:

su - jdoe
Password: abc123
Oracle Corporation SunOS 5.11 11.0 November 2011
jdoe@solaris:~$ ppriv $$
1790: -bash
flags = <none>
 E: basic
 I: basic
 P: basic
 L: all
jdoe@solaris:~$ dtrace -l
dtrace: failed to initialize dtrace: DTrace requires additional privileges

As we can see here jdoe is missing some privileges to be allowed to use DTrace. There are have 3 privileges needed for DTrace:
dtrace_kernel, dtrace_proc, dtrace_user, depending on what the user needs to use DTrace for. We can add these
privileges to the user in three different ways:

Add the privileges needed to the user. This would allow the user to use DTrace as him or herself.1.
Create an execution profile with the dtrace command and the needed privileges, and assign the profile to the user. This
would allow him or her to use a profile shell (i.e., pfbash) to execute the dtrace command.

2.

Oracle Solaris 11 Security Lab

6 of 12

Create a role with the needed privileges, and assign the role to user. This would require the user to assume the role to use
DTrace.

3.

Lets see how to add dtrace privileges directly to the user:

root@solaris:~# usermod -K defaultpriv=basic,dtrace_kernel,dtrace_proc,dtrace_user jdoe

Let's see if jdoe now has all needed privileges to use the dtrace command:

lab@solaris:~$ su - jdoe
Password: abc123
Oracle Corporation SunOS 5.11 11.0 November 2011
jdoe@solaris:~$ ppriv $$
1814: -bash
flags = <none>
 E: basic,dtrace_kernel,dtrace_proc,dtrace_user
 I: basic,dtrace_kernel,dtrace_proc,dtrace_user
 P: basic,dtrace_kernel,dtrace_proc,dtrace_user
 L: all
jdoe@solaris:~$ dtrace -l | more
 ID PROVIDER MODULE FUNCTION NAME
 1 dtrace BEGIN
 2 dtrace END
 3 dtrace ERROR
 7 syscall nosys entry
 8 syscall nosys return
 9 syscall rexit entry
 10 syscall rexit return

OK, so that worked, just for the fun of it lets try to create a role that does the same.

First lets remove the dtrace privileges from jdoe:

root@solaris:~# usermod -K defaultpriv=basic jdoe
root@solaris:~# userattr defaultpriv jdoe
basic

Then lets create a new role (using root shell, i.e. as a root user), lets call the role "bugger", and assign it to jdoe

root@solaris:~# roleadd -u 201 -d /export/home/bugger -P "Process Management" bugger root@solaris:~# passwd
bugger New Password: abc123 Re-enter new Password: abc123 passwd: password successfully changed for bugger
root@solaris:~# rolemod -K defaultpriv=basic,dtrace_kernel,dtrace_proc,dtrace_user bugger root@solaris:~#
userattr defaultpriv bugger basic,dtrace_kernel,dtrace_proc,dtrace_user root@solaris:~# usermod -R bugger jdoe
root@solaris:~# roles jdoe bugger

OK, lets try and see if jdoe now can use DTrace

lab@solaris:~$ su - jdoe
Password: Oracle Corporation SunOS 5.11 11.0 November 2011
jdoe@solaris:~$ roles
bugger
jdoe@solaris:~$ su bugger
Password:
jdoe@solaris:~$ ppriv $$
1855: bash
flags = PRIV_PFEXEC

E: basic,dtrace_kernel,dtrace_proc,dtrace_user
I: basic,dtrace_kernel,dtrace_proc,dtrace_user
P: basic,dtrace_kernel,dtrace_proc,dtrace_user

Oracle Solaris 11 Security Lab

7 of 12

L: all

jdoe@solaris:~$ dtrace -l | more
 ID PROVIDER MODULE FUNCTION NAME
 1 dtrace BEGIN
 2 dtrace END
 3 dtrace ERROR
 7 syscall nosys entry
 8 syscall nosys return
 9 syscall rexit entry
 10 syscall rexit return

Summary

Now you should have a basic understanding about privileges and how you can assign them to users, however wouldn't it be nice if we
could do the same to processes? We will look at that in Exercise S.3.

Exercise S.3: Process Privileges and Rights
Expected duration: 10 minutes

Background

We have looked at how you can add privileges to a user, now we'll look at how privileges interact with processes, we will look at both
processes that are privilege aware and processes that are non-privilege aware.

The idea of managing privileges is not limited to users and their shells. In any given system you find dozens of programs running as
daemons.

These daemons interact in several ways with the privileges. The best way is "privilege-aware programming". Let's assume you code a
daemon for your system. For example: You know that your daemon will never do an exec() call. So you can safely drop this privilege.
The process modifies the permitted privilege set. The process can remove a privilege but not add it. Even when someone is able to
access your process, the attacker can't make an exec() call. The process doesn't even have the privilege to do such a call. And the
attacker can't add the privilege again. Several processes and programs in Solaris are already privilege aware. For example the
kernel-level cryptographic framework daemon. Let's look at the privileges of the daemon.

In order to observe or manage privileges, a process must itself already have those privileges. Therefore we will assume the root role
for the following exercise.

lab@solaris:~$ su - root
Password: <root password>
root@solaris:~# ps -ef | grep kcfd
 daemon 80 1 0 06:04:21 ? 0:00 /lib/crypto/kcfd

root@solaris:~# ppriv -v 80
80: /lib/crypto/kcfd
flags = PRIV_AWARE

E: file_owner,file_read,file_write,net_access,proc_priocntl,sys_devices
I: none
P: file_owner,file_read,file_write,net_access,proc_priocntl,sys_devices
L: none

This daemon doesn't have even the basic privileges of a regular user. It has the only the bare minimum of privileges to do its job.

Non-privilege aware processes

But the world isn't perfect. Not every process is privilege aware. Thus you have to limit the privileges by other mechanisms. The
Service Management Facility comes to help. The following example is copied from Glenn Brunette's Blueprint Limiting Service
Privileges in the Solaris 10 Operating System.

Oracle Solaris 11 Security Lab

8 of 12

Let's take the Apache Webserver as an example. The apache web server is not privilege aware. We start the daemon via the Service
Management Framework (SMF).

root@solaris:~# svcadm -v enable -s apache22
svc:/network/http:apache22 enabled.

OK, now we look at the processes of the Apache daemons.

root@solaris:~# ps -ef | grep "apache" | grep -v grep
webservd 1894 1891 0 12:35:00 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 1892 1891 0 12:35:00 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 1893 1891 0 12:35:00 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
 root 1891 1 0 12:34:59 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 1895 1891 0 12:35:00 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 1896 1891 0 12:35:00 ? 0:00 /usr/apache2/2.2/bin/httpd -k start

Five daemons are running as webservd, and one is running as root.

root@solaris:~# ppriv 1891
1891: /usr/apache2/2.2/bin/httpd -k start
flags =

E: all
I: basic
P: all
L: all

As expected for a root process, this process has the complete set of privileges of a root user. Now lets look at one of its children:

root@solaris:~# ppriv 1895
1895: /usr/apache2/2.2/bin/httpd -k start
flags =

E: basic
I: basic
P: basic
L: all

Much better... Only basic privileges.

OK, There is a reason for this configuration. On Unix systems, you have two groups of ports. Privileged ones from 1-1023 and
unprivileged ones from 1024 up. You can only bind to a privileged port with the privilege to do it. A normal user doesn't have this
privilege, but root does. And thus there has to be one process running as root. Do you remember the list of privileges for the apache
process running at root? The process has all privileges but needs only one of them, that isn't part of the basic privilege set.

Exercise S.4: SMF, Process Privileges and Authorizations
Expected duration: 10 minutes

Introduction

We have now looked at both privilege aware and non-privilege aware processes, now lets look at how we can use SMF to let a user
with a limited set of privileges manage a non-privilege aware process and give it the required privileges without using setuid to root.

In order to observe or manage privileges, a process must itself already have those privileges. Therefore we will assume the root role
for the following exercise.

Background

How to get rid of the root apache process

It doesn't have to be this way. With Solaris you can give any user or process the privilege to use a privileged port. You don't need the

Oracle Solaris 11 Security Lab

9 of 12

root process anymore.

Let's configure it this way. At first we have to deactivate the running apache from Exercise S.3:

lab@solaris:~$ su - root
Password: <root password>
root@solaris:~# svcadm -v disable -s apache22
svc:/network/http:apache22 disabled.

We will not be explaining the Service Management Facility here, but you can set certain properties in SMF to control the startup of a
service:

1 root@solaris:~# svccfg -s apache22
2 svc:/network/http:apache22> setprop start/user = astring: webservd
3 svc:/network/http:apache22> setprop start/group = astring: webservd
4 svc:/network/http:apache22> setprop start/privileges = astring: basic,!proc_session,!proc_info,!file_link_any,net_pr
5 svc:/network/http:apache22> setprop start/limit_privileges = astring: :default
6 svc:/network/http:apache22> setprop start/use_profile = boolean: false
7 svc:/network/http:apache22> setprop start/supp_groups = astring: :default
8 svc:/network/http:apache22> setprop start/working_directory = astring: :default
9 svc:/network/http:apache22> setprop start/project = astring: :default
10 svc:/network/http:apache22> setprop start/resource_pool = astring: :default
11 svc:/network/http:apache22> end

Line 2 to 4 are the most interesting ones. Without any changes, the Apache daemon starts as root and forks away processes with the
webservd user. But we want to get rid of the root user for this configuration. Thus we start the daemon directly with the webservd user,
the same goes for the group id.

Now it gets interesting. Without this line (line 4), the kernel would deny Apache to bind to port 80. webservd is a regular user without
the privilege to use a privileged port. The property start/privileges sets the privileges to start the service. At first, we give the
service basic privileges. Then we add the privilege to use a privileged port. The service would start up now.

But wait, we can do more. A webserver shouldn't do any hardlinks. And it doesn't send signals outside it's session. And it doesn't look
at processes other than those to which it can send signals. We don't need these privileges. proc_session, proc_info and
file_link_any are part of the basic privilege set. We remove them, by adding a ! in front of the privilege:

root@solaris:~# svcadm -v refresh apache22
Action refresh set for svc:/network/http:apache22.

OK, we have notified SMF of the configuration changes.

Until now, the apache daemon used the root privileges. Thus the ownership of files and directories were unproblematic. The daemon
was able to read and write in any directory or file in the system. As we drop its privilege set by using a regular user, we have to modify
the ownership of some files and move some files:

root@solaris:~# mkdir -p -m 755 /var/apache2/2.2/run
root@solaris:~# chown webservd:webservd /var/apache2/2.2/run
root@solaris:~# chown webservd:webservd /var/apache2/2.2/logs/access_log
root@solaris:~# chown webservd:webservd /var/apache2/2.2/logs/error_log

We need some configuration changes, too. We have to move the LockFile and the PidFile. There wasn't one of the two configuration
directives specified earlier, thus we're simply appending them to the end of the configuration file:

root@solaris:~# bash -c 'echo LockFile /var/apache2/2.2/logs/accept.lock >> /etc/apache2/2.2/httpd.conf'
root@solaris:~# bash -c 'echo PidFile /var/apache2/2.2/run/httpd.pid >> /etc/apache2/2.2/httpd.conf'

OK, everything is in place. Let´s give it a try.

root@solaris:~# svcadm disable apache22

Oracle Solaris 11 Security Lab

10 of 12

svc:/network/http:apache22 disabled.
root@solaris:~# svcadm -v enable -s apache22
svc:/network/http:apache22 enabled.

Now we check for the running httpd processes:

root@solaris:~# ps -ef | grep httpd | grep -v grep
webservd 2032 2031 0 14:34:27 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 2031 1 1 14:34:26 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 2033 2031 0 14:34:27 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 2034 2031 0 14:34:27 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 2036 2031 0 14:34:27 ? 0:00 /usr/apache2/2.2/bin/httpd -k start
webservd 2035 2031 0 14:34:27 ? 0:00 /usr/apache2/2.2/bin/httpd -k start

You notice the difference ? There is no httpd running as root. All processes run with the userid webservd. Mission accomplished.

Let's check the privileges of the processes. At first the one, who ran as root before:

root@solaris:~# ppriv 2031
2031: /usr/apache2/2.2/bin/httpd -k start
flags = <none>

E: basic,!file_link_any,net_privaddr,!proc_info,!proc_session
I: basic,!file_link_any,net_privaddr,!proc_info,!proc_session
P: basic,!file_link_any,net_privaddr,!proc_info,!proc_session
L: all

Only the least privileges to do the job, no root privileges. And even the other processes are more secure now. Before we changed the
configuration of the webserver, it had the basic privileges of a regular user. Now we have limited even this set.

But we still need to be a privileged user to start apache. Wouldn't it be nice if I could delegate management of "services" to
unprivileged users. I can use authorizations to do that, and authorizations is integrated with SMF. There are two authorizations we will
need to add to our user to give hi the right to manage the apach22 service. We need an authorization to manage our service as well as
a authorization to change the state of our service:

solaris.smf.value.http/apache22 - Gives a user the right to modify the value of a property in the Apache service.
solaris.smf.manage.http/apache22 - Gives a user the right to change the state of a the Apache service with
svcadm.

Both are needed to change the state of a service, as the state of the service is kept as a property for the service.

root@solaris:~# svcprop http:apache22 | grep auth
httpd/value_authorization astring solaris.smf.value.http/apache22
general/action_authorization astring solaris.smf.manage.http/apache22
general/value_authorization astring solaris.smf.value.http/apache22

First we need to add our authorizations to /etc/security/auth_attr

root@solaris:~# echo solaris.smf.manage.http:::Mange Apache 2.2:: >> /etc/security/auth_attr
root@solaris:~# echo solaris.smf.value.http:::Mange Apache 2.2:: >> /etc/security/auth_attr

Note: In most SMF manifests one authorization is used for both action_authorization and value_authorization, as they are commonly
used together.

Now lets add those authorizations to our old friend jdoe.

root@solaris:~# usermod -A solaris.smf.manage.http/apache22,solaris.smf.value.http/apache22 jdoe
Found user in files repository.
root@solaris:~# userattr auths jdoe
solaris.smf.manage.http/apache22,solaris.smf.value.http/apache22

Lets see if jdoe can start and stop apache now

Oracle Solaris 11 Security Lab

11 of 12

root@solaris:~# su - jdoe
Oracle Corporation SunOS 5.11 11.0 November 2011
jdoe@solaris:~$ svcadm disable apache22
jdoe@solaris:~$ svcs *apache*
STATE STIME FMRI
disabled 14:57:51 svc:/network/http:apache22
jdoe@solaris:~$ svcadm enable apache22
jdoe@solaris:~$ svcs *apache*
STATE STIME FMRI
online 14:58:24 svc:/network/http:apache22

That worked fine, so by using SMF we've been able to take a service such as apache, remove its need to start as root by giving it the
privileges it needed and nothing more. We also removed some privileges that apache doesn't need, but a hacker might use them to
take control of your system.

Add to that we added the right to manage the apache service via SMF to an unprivileged user by giving him the correct authorizations
that allows a user to manage that particular service and nothing else, as you can see here.

jdoe@solaris:~$ svcs sendmail
STATE STIME FMRI
online 6:48:12 svc:/network/smtp:sendmail
jdoe@solaris:~$ svcadm disable sendmail
svcadm: svc:/network/smtp:sendmail: Permission denied.

Congratulations! You have successfully completed Oracle Solaris 11 Security Lab.

For additional information about the technologies used in this lab, please see the following links:

http://www.oracle.com/technetwork/server-storage/solaris/overview/security-163473.html
http://www.oracle.com/us/products/servers-storage/solaris/security/index.html

Restricting Service Administration in the Solaris 10 OS
Limiting Service Privileges in the Solaris 10 OS
Privilege Debugging in the Solaris 10 Operating System
Privilege Bracketing in the Solaris 10 Operating System

Oracle Solaris 11 Security Lab

12 of 12

Oracle Solaris 11 DTrace Lab
Table of Contents
Exercise D.1: DTrace CPU
Exercise D.2: DTrace Disk

Exercise D.1: DTrace CPU
Task: You have noticed that system utilization is very high. How to find the process which consumes most of the resources?

Lab: Let's model a simple situation to demonstrate how DTrace scripts can be used in the situations when no other tool is helpful.

60 Seconds of Theory: DTrace is a big topic. We can spend weeks and months learning DTrace and we will still be discovering
something new. The "DTrace Book" is hot off the press and available at Amazon. It's over 1150 pages on the subject! We'll spend
about half an hour just to give you a taste of DTrace. If you need more-buy the book, find DTrace resources on the web--there are
plenty of them.

In short, DTrace is a tool which allows you to look into every part of your system: from kernel structures and system calls to application
functions, from contents of system stack to user interface. It is achieved by embedding a lot (literally, tens of thousands!) of probes in
each and every place of the operating system. All those probes are dynamic: you can turn them on and off (fire them) and they don't
consume system resources when not in use.

Another important feature of DTrace is its safety. Safety was one the central design goals of DTrace from its inception; that means you
can (and should) use DTrace on your production systems.

DTrace uses a C-like scripting language called D, which supports all ANSI C operators. Most likely you are familiar with C language
syntax, that really helps in learning D. We won't go into DTrace language and syntax here, we'll just try several examples that can be
helpful in everyday life.

DTrace one-liners

There are a lot of useful one-liners in every scripting language: bash, sed, awk, Perl etc. DTrace is not an exception here. Try the
following one-liners and see what you can observe with them. The usual way to work with DTrace scripts is to start them, wait for some
time while DTrace is collecting data and then press Ctrl-C.

What processes are being started currently? New processes with arguments:

dtrace -n 'proc:::exec-success { trace(curpsinfo->pr_psargs); }'

Longer version: new processes with arguments and time

dtrace -qn 'syscall::exec*:return { printf("%Y %s\n",walltimestamp,curpsinfo->pr_psargs); }'

Which files are being opened by each starting process?

dtrace -n 'syscall::open*:entry { printf("%s %s",execname,copyinstr(arg1)); }'

System time is high. What are the programs doing, who is calling most of system calls?

dtrace -n 'syscall:::entry { @num[execname] = count(); }'

Which syscalls are being called most often?

dtrace -n 'syscall:::entry { @num[probefunc] = count(); }'

Which process is calling most of system calls?

dtrace -n 'syscall:::entry { @num[pid,execname] = count(); }'

Read IOPS are high. Who is reading now? Read bytes by process

dtrace -n 'sysinfo:::readch { @bytes[execname] = sum(arg0); }'

Oracle Solaris 11 DTrace Lab

1 of 4

Write IOPS are high. Somebody is writing to disk, filling up all the space. Who is writing?

dtrace -n 'sysinfo:::writech { @bytes[execname] = sum(arg0); }'

How big are blocks being read? Read size distribution by process

dtrace -n 'sysinfo:::readch { @dist[execname] = quantize(arg0); }'

Write size distribution by process

dtrace -n 'sysinfo:::writech { @dist[execname] = quantize(arg0); }'

Back to our example. Open another terminal window or a tab on your Solaris desktop. Write the following bash script:

lab@solaris:~$ while true ; do date > /dev/null ; done

In your previous window/tab (where you have your root session open) run:

root@solaris:~# vmstat 1

What do you see? System time as about 70%, user time is about 30%, idle is 0%. System is really busy doing something in the kernel.
Imagine you don't know what has happened in the other window. What would you do?

root@solaris:~# top

...shows nothing. Not a single process in the list is generating such high load.

root@solaris:~# prstat

...doesn't help as well. OK, let's think: high system time means a lot of system calls. Use DTrace and ask: which program generates the
most of the system calls?

root@solaris:~# dtrace -n 'syscall:::entry { @num[execname] = count(); }'

Does it look cryptic to you? No worries: we have just instructed DTrace to count ("count()") every system call ("syscall") when it
starts ("entry") then aggregate that numbers of system calls by program name ("execname") and sort the output.

Wait a little bit (DTrace is collecting the data) and press Ctrl-C. You see: at the bottom of the list there is the "date" command. That
means "date" is issuing a lot of system calls. We can try to find a program with the name "date":

root@solaris:~# ps -ef | grep date

Nothing. Let's try another script: what new processes are being executed?

root@solaris:~# dtrace -qn 'syscall::exec*:return \
{ printf("%Y %s\n",walltimestamp,curpsinfo->pr_psargs); }'

Now we are counting not every system call, but just exec* system calls. Then we instruct DTrace to output time and process
arguments.

A-ha, now we see: a lot of "date" commands are executed each second! That's why we didn't see them in ps -ef! They just start and
finish in a matter of milliseconds. But who runs all these "date" commands? Let's modify the last script a little bit and make it print out
not only the arguments, but also the process ID and the parent process ID:

root@solaris:~# dtrace -qn 'syscall::exec*:return \
{ printf("%Y %s %d %d\n",walltimestamp,curpsinfo->pr_psargs,curpsinfo->pr_pid,curpsinfo->pr_ppid); }'

We see a lot of strings like this:

2011 Aug 5 20:32:24 date 28996 29016
2011 Aug 5 20:32:24 date 28997 29016

Now it's clear that a lot of "date" calls are generated by the process ID 29016! What is that process and who has started it?

root@solaris:~# ps -f -p 29016

Oracle Solaris 11 DTrace Lab

2 of 4

UID PID PPID C STIME TTY TIME CMD
lab 29016 1608 12 16:27:26 pts/4 2:09 bash

OK, now we know who's to blame!

Don't forget to kill the shell process which runs the infinite loop!

Back to top

Exercise D.2: DTrace Disk
Task: You have noticed that free disk space has decreased dramatically and keeps decreasing very fast. Who is "eating" our disk
space?

In this lab we are going to use DTrace Toolkit script. More about DTrace Toolkit in the tip below. You don't have to run all those scripts
during the lab, leave it for your homework exercise.

DTrace Toolkit

Another step in learning DTrace is the excellent Toolkit written by Brendan Gregg:

http://www.brendangregg.com/dtrace.html#DTraceToolkit

The toolkit includes more than 200 very useful, well documented scripts for system administrator's everyday use. Here is a short
description of it's content:

http://www.solarisinternals.com/wiki/index.php/DTraceToolkit

The good news is that it's already installed in the default Solaris 11 installation and it's located here: /usr/dtrace/DTT/

It is highly recommended to start with the most useful scripts which are located in main DTT directory and are executable from
command line.

Quote from http://www.solarisinternals.com/wiki/index.php/DTraceToolkit#Top_Scripts_to_Run :

If you have the DTraceToolkit on a misbehaving server and you don't know where to start, the following list of tools will provide the
most valuable info in the shortest time:

1. ./execsnoop -v : Look for many processes being executed quickly, as many short lived processes add considerable overhead.

2. ./iosnoop : Watch what is happening on the disks for any unexpected activity. Check who is using the disks and the size of the
disk events.

3. ./opensnoop -e : Run opensnoop, learn lots. It is amazing what interesting problems opensnoop has unearthed. Many things
are files (config files, data files, device files, libraries), and watching the open events provides a useful insight on what is really
happening.

4. ./procsystime -aT : This will show elapsed time, on-CPU time and counts for system calls. Very useful, and either -p PID or -n
execname can be used to narrow examination to your target application only.

5. ./iotop -PCt8 : If disk events occured too quickly, iotop can provide a rolling summary.

6. ./rwtop -Ct8 : Rather than looking at the disk event level (iosnoop, iotop), rwtop examines at the syscall layer. This is
application I/O. Much of this may be to the file system cache, some may make it to disk, and some may be for IPC.

Also don't forget to have some fun with the scripts from Misc/ directory!

Lab: To simulate this problem, we are going to use a small program that does nothing but just eats disk space. First argument is the
rate (in kB/sec) at which it will be eating space; second argument is a name of big file we are going to create for that. (Just in case: the
program is located in /home/lab/bin/.)

root@solaris:~# diskeater.py -s 100 -o /export/home/lab/bigfile

Open another terminal window, become a "root" there and check free space in your system's /export/home directory:

Oracle Solaris 11 DTrace Lab

3 of 4

root@solaris:~# df -b /export/home

Repeat this several times and take a note how your free space is decreasing. You can even try the following script to automate it:

root@solaris:~# while true ; do df -b /export/home ; sleep 1 ; done

How can we find out which process is eating our disk space? Usually programs like iostat don't give you per-process information,
only per-disk I/O workload. Try this:

root@solaris:~# iostat -x 5

What do you see? Some writing activity on one of the disks, but nothing more detailed. Think about other ways to solve this puzzle.
Here is how it can be solved with DTrace Toolkit:

root@solaris:~# /usr/dtrace/DTT/rwtop

You will see something like this:

2011 Nov 15 13:11:39, load: 0.25, app_r: 2 KB, app_w: 502 KB

 UID PID PPID CMD D BYTES
60004 1710 1641 nautilus R 0
60004 1713 1641 updatemanagernot R 0
60004 1722 1641 isapython2.6 R 0
60004 1751 1641 gnome-power-mana R 0
60004 1762 1641 nwam-manager R 0
60004 1735 1641 java R 1
60004 1763 1641 xscreensaver W 8
60004 1792 1 gnome-terminal R 25
60004 810 782 Xorg W 32
60004 1763 1641 xscreensaver R 32
60004 1735 1641 java W 33
60004 1792 1 gnome-terminal W 2492
60004 810 782 Xorg R 2532
60004 1811 1810 diskeater W 512000

Now it's pretty easy to identify who is responsible for our free space deficit!

Don't forget to stop the diskeater process in the other window, otherwise the problem will become very real (at least inside your
virtual machine).

Back to top

Oracle Solaris 11 DTrace Lab

4 of 4

